I TĂTURĂ RUAĂ TEL TĂTURĂ ÎN MĂTURĂ ÎN MĂT

Seat No.

HB-003-1104009

M. Sc. (Sem. IV) Examination April - 2023 Inorganic Chemistry : C(I)-403 (Bonding in Complexes)

Faculty Code : 003 Subject Code : 1104009

Time : $2\frac{1}{2}$ / Total Marks : 70

Instructions :

- (1) All questions are compulsory.
- (2) All questions carry equal marks.

1 Answer the following : (any seven out of ten) 14

- (1) Give the difference between Tanabe-Sugano and Orgel diagram.
- (2) How Racah Parameters can be evaluated ?
- (3) Give two possible hybridizations of ML_4 type complexes with suitable examples.
- (4) Show Crystal Field Splitting diagram for square planar complexes.
- (5) Define L-S coupling.
- (6) Calculate the Magnetic Moment for Mn^{+2} and Fe^{+3} .
- (7) What is spin multiplicity ?
- (8) Find out the spectral term for the Fe^{++} and Fe^{+++} ions.
- (9) What is hold formalism ?
- (10) Give the use of Tanabe-Sugano diagram.

2 Answer the following : (any two out of three)

- 14
- (1) Show that P1Cos = $\theta = 1/2$ (5Cos³ θ -3Cos θ), where I = 3
- (2) Explain d-orbital splitting in Tetrahedral field.
- (3) Explain charge transfer spectra.

- **3** Answer the following :
 - (1) Calculate energy the integral $\langle \phi 2\phi 1 | \text{Voct} | \phi 2\phi 1 \rangle$,

where $\langle \phi 1 | \text{Voct} | \phi 1 \rangle = -4Dq$ and $\langle \phi 2 | \text{Voct} | \phi 2 = Dq$

(2) Explain Orgel diagram for d^2 and d^8 .

OR

- **3** Answer the following :
 - (1) Explain Jahn-Teller effect in Octahedral field.
 - (2) Construct the correlation diagram for d² in octahedral weak field and strong field.

4 Answer the following :

- (1) Derive $(m/4+y4/m') = 1/8 r4\sin 4\theta$, where $m = m' \pm 4$
- (2) Discuss the spectrum of $[Cr(H_2O)_6]^{+3}$ in detail. Show that how β , B and 10Dq can be determined from the spectra.
- 5 Answer the following : (any two out of four) 14
 - (1) Show that $P_1 \cos \theta = 1/2$ ($3\cos^2 \theta 1$), where 1 = 2
 - (2) Calculate total multiplicity with ground state spectral terms for d^1 and d^2 configurations.
 - (3) What are step up and Step down operators ? Derive L < 3 - 2 > from L < 3, -1 >.
 - (4) Explain the Tanabe-Sugano diagram for d^4 and d^5 configurations.

2

14

14